Staphylococcal enterotoxin H displays unique MHC class II-binding properties.

نویسندگان

  • H Nilsson
  • P Björk
  • M Dohlsten
  • P Antonsson
چکیده

Staphylococcal enterotoxin H (SEH) has been described as a superantigen by sequence homology with the SEA subfamily and briefly characterized for its in vivo activity. In this study, we demonstrate that SEH is a potent T cell mitogen and inducer of T cell cytotoxicity that possesses unique MHC class II-binding properties. The apparent affinity of SEH for MHC class II molecules is the highest affinity ever measured for a staphylococcal enterotoxin (Bmax1/2 approximately 0.5 nM for MHC class II expressed on Raji cells). An excess of SEA or SEAF47A, which has reduced binding to the MHC class II alpha-chain, is able to compete for binding of SEH to MHC class II, indicating an overlap in the binding sites at the MHC class II beta-chain. The binding of SEH to MHC class II is like SEA, SED, and SEE dependent on the presence of zinc ions. However, SEH, in contrast to SEA, binds to the alanine-substituted DR1 molecule, betaH81A, believed to have impaired zinc-bridging capacity. Furthermore, alanine substitution of residues D167, D203, and D208 in SEH decreases the affinity for MHC class II as well as its in vitro potency. Together, this indicates an MHC class II binding site on SEH with a different topology as compared with SEA. These unique binding properties will be beneficial for SEH to overcome MHC class II isotype variability and polymorphism as well as to allow an effective presentation on APCs also at low MHC class II surface expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Both alpha-helices along the major histocompatibility complex binding cleft are required for staphylococcal enterotoxin A function.

The superantigen staphylococcal enterotoxin A (SEA) requires interaction with class II major histocompatibility complex (MHC) molecules to activate T cells. We have previously used the synthetic peptide approach to establish one side of the hypothetical class II foreign-antigen binding cleft, alpha-helical region 65-85 of the beta chain, as a binding site involved in accessory cell presentation...

متن کامل

Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators.

Bacterial superantigen intoxication causes massive overactivation of T cells, which can result in potentially lethal toxic shock. Superantigens fall into two groups: superantigens such as staphylococcal enterotoxin B (SEB) that contain a single generic binding site for major histocompatibility complex class II (MHC-II) and more potent superantigens such as SEA with a second, zinc-dependent MHC-...

متن کامل

Functional analysis of Mycoplasma arthritidis-derived mitogen interactions with class II molecules.

The ability of superantigens (SAGs) to trigger various cellular events via major histocompatibility complex (MHC) class II molecules is largely mediated by their mode of interaction. Having two MHC class II binding sites, staphylococcal enterotoxin A (SEA) is able to dimerize MHC class II molecules on the cell surface and consequently induces cytokine gene expression in human monocytes. In cont...

متن کامل

Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule.

Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 163 12  شماره 

صفحات  -

تاریخ انتشار 1999